Mathématiques pour l'ingénieur (Exercices et problèmes)

Mathématiques pour l'ingénieur (Exercices et problèmes)

Size
Price:

Affichez plus »



A propos du livre
Ce livre est un recueil d’exercices et de problèmes dans les grands secteurs des mathématiques pour l’ingénieur. Il s’adresse aux étudiants de troisième année de Licence de physique et d’EEA ainsi qu’aux élèves des écoles d’ingénieurs. Il est le fruit d’un enseignement de mathématiques pour l’ingénieur dispensé en première année de l’École Nationale Supérieur d’Électronique, d’In- formatique et de Radiocommunication de Bordeaux (ENSEIRB). Nous avons pris le parti de privilégier l’exposé des méthodes de calcul et de recherche des solutions en laissant parfois le soin au lecteur d’établir par lui-même la justification mathématique de telle ou telle étape (convergence uniforme d’intégrales ou de séries, permutation d’intégrales...).

Dans la plupart des chapitres, des exercices permettent de se familiariser avec les méthodes de calcul. Les problèmes sont plus structurés, plus approfondis et surtout orientés vers les applications en physique de l’ingénieur. Certains peuvent constituer des « mini-projets » et être poursuivis par des calculs sur ordinateur (il est fait référence dans quelques problèmes à des prolongements sous Maple).

Le chapitre 1 rappelle et présente des notions qui seront utilisées dans la suite de l’ouvrage. La distribution de Dirac y est exposée selon l’approche « phénoménologique » usuelle pour les phy- siciens qui permet une utilisation simple et extensive. L’étude plus rigoureuse des distributions fait l’objet du chapitre 5 (Distributions).

Les chapitres 2 et 3 sont consacrés aux transformations inté- grales de Fourier et de Laplace et à leurs applications en physique pour l’ingénieur, avec notam- ment au chapitre 3 plusieurs problèmes sur l’étude des lignes de transmission.

Le chapitre 4 est consacré à l’étude des fonctions d’une variable complexe avec une orientation particulière vers le calcul d’intégrales. Ces notions sur les fonctions analytiques introduites au chapitre 4 et sur les dis- tributions étudiées au chapitre 5 trouvent un prolongement au chapitre 6 où elles sont appliquées à la description du principe de causalité en physique et à la modélisation des filtres linéaires : relations de Kramers- Kronig, filtres à phase minimale, relations de Bayard-Bode, théorème de Paley-Wiener.

Les fonctions de Bessel, chapitre 7, et les polynômes orthogonaux, chapitre 8, sont étudiés en vue de leur application à la résolution d’équations différentielles et d’équations aux dérivées partielles (chapitre 9).

Cet ouvrage ne prétend pas à l’exhaustivité et certains domaines des mathématiques pour la physique n’y sont pas traités : la théorie des groupes dont les applications sont d’un niveau tech- nique plus avancé, le calcul matriciel qui pour l’ingénieur ressort maintenant davantage du calcul sur ordinateur avec des outils comme Matlab, le calcul variationnel, dont le champ d’application est plus restreint. La plupart des exercices et problèmes originaux de cet ouvrage sont l’œuvre d’une longue collaboration au sein de laquelle nous tenons à remercier plus particulièrement Bernard Morand, Michel Daumens, Michel Hontebeyrie et Pierre Minnaert.

Achetez le livre en un clic ici👉Mathématiques pour l'ingénieur
price/150 Gourdes

0 Reviews

Contact form

Nom

E-mail *

Message *